
COP 4710: Data Modeling (Chapter 2 – Part 1) Page 1 © Dr. Mark Llewellyn

COP 4710: Database Systems

Fall 2013

Chapter 2 – Introduction to Data Modeling

Part 1 – The Data Models

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2013

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 2 © Dr. Mark Llewellyn

• Database design focuses on how the database structure will be
used to store and manage end-user data.

• Data modeling, the first step in designing a database, refers to the
process of creating a specific data model for a determined
problem domain.

• A problem domain is a clearly defined area within the real-world
environment, with well-defined scope and boundaries, that will be
systematically addressed.

• A data model is a relatively simple representation, usually,
graphical in nature, of more complex real-world data structures.
In general terms, a model is an abstraction of a more complex
real-world object or event. The model’s main function is to help
you understand the complexities of the real-world environment.

Introduction to Data Modeling

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 3 © Dr. Mark Llewellyn

• Designers, programmers, and end users see data in different ways.

• Different views of the same data lead to designs that do not reflect

how an organization operates.

• Data modeling reduces the complexities of database design. It is

an iterative and progressive process that begins with a simple

understanding of the problem domain, and as your understanding

increases, so does the level of detail in the data model.

• Various degrees of data abstraction help reconcile varying views

of same data. When done properly, the final data model

effectively is a “blueprint” with all the instructions to build the

database that will meet all end-user requirements.

Introduction to Data Modeling

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 4 © Dr. Mark Llewellyn

• The importance of data modeling cannot be overstated.

• Data constitute the most basic information unites employed by a
system. Applications are created to manage data and to help
transform data into information.

• Recall though, that data are viewed in different ways by different
users. Consider how different the views of the purchasing
department manager and the inventory manager might be in an
organization. The inventory manager is more concerned with
inventory levels, while the purchasing manager is more concerned
with the cost of items and the relationships with the suppliers of
those items.

Introduction to Data Modeling

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 5 © Dr. Mark Llewellyn

• Semantic data models attempt to capture the “meaning” of a
database. Practically, they provide an approach for conceptual
data modeling.

• Over the years there have been several different semantic data
models that have been proposed.

• By far the most common is the entity-relationship data model,
most often referred to as simply the E-R data model.

• The E-R model is often used as a form of communication
between database designers and the end users during the
developmental stages of a database.

Introduction to Data Modeling

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 6 © Dr. Mark Llewellyn

• The E-R model contains an extensive set of modeling tools,

some of which we will not be concerned with as our primary

objective is to give you some insight into conceptual database

design and not learning all of the ins and outs of the E-R model.

• Another conceptual modeling which is becoming more common

is the Object Definition Language (ODL) which is an object-

oriented approach to database design that is emerging as a

standard for object-oriented database systems.

Introduction to Data Modeling (cont.)

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 7 © Dr. Mark Llewellyn

• The database design process can be divided into six basic
steps. Semantic data models are most relevant to only the
first three of these steps.

1. Requirements Analysis: The first step in designing a
database application is to understand what data is to be
stored in the database, what applications must be built on
top of it, and what operations are most frequent and subject
to performance requirements. Often this is an informal
process involving discussions with user groups and
studying the current environment. Examining existing
applications expected to be replaced or complemented by
the database system.

Database Design

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 8 © Dr. Mark Llewellyn

2. Conceptual Database Design: The information gathered in

the requirements analysis step is used to develop a high-

level description of the data to be stored in the database,

along with the constraints that are known to hold on this

data.

3. Logical Database Design: A DBMS must be selected to

implement the database and to convert the conceptual

database design into a database schema within the data

model of the chosen DBMS.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 9 © Dr. Mark Llewellyn

4. Schema Refinement: In this step the schemas developed in
step 3 above are analyzed for potential problems. It is in
this step that the database is normalized. Normalization of
a database is based upon some elegant and powerful
mathematical theory. We will discuss normalization later
in the term.

5. Physical Database Design: At this stage in the design of a
database, potential workloads and access patterns are
simulated to identify potential weaknesses in the
conceptual database. This will often cause the creation of
additional indices and/or clustering relations. In critical
situations, the entire conceptual model will need
restructuring.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 10 © Dr. Mark Llewellyn

6. Security Design: Different user groups are identified and

their different roles are analyzed so that access patterns to

the data can be defined.

• There is often a seventh step in this process with the last

step being a tuning phase, during which the database is

made operational (although it may be through a

simulation) and further refinements are made as the system

is “tweaked” to provide the expected environment.

• The illustration on the following page summarizes the

main phases of database design.

Database Design (cont.)

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 11 © Dr. Mark Llewellyn

Database Design (cont.)

Miniworld

Requirements Collection and Analysis

Conceptual Design

Logical Design – (data model mapping)

Physical Design

Database Requirements

Conceptual Schema (high-level data model)

Logical Schema (data model of specific DBMS)

Internal Schema

Functional Requirements

Functional Analysis

High-level Transaction Specification

Application Program Design

Transaction Implementation

Application Programs

D
B

M
S

-i
n
d

e
p

e
n
d
e
n

t
D

B
M

S
-s

p
e

c
if
ic

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 12 © Dr. Mark Llewellyn

• The basic building blocks of all data models are entities,
attributes, relationships, and constraints.

• An entity is a person, place, thing, or event about which data will
be collected and stored. An entity represents a particular type of
object in the real world, which means that an entity is
“distinguishable” that is, each occurrence is unique and distinct.

• An entity may be a tangible object, i.e., one that you can touch
such as a person or a product. An entity may also be intangible,
such as a flight route, or a rock concert (an event).

• An attribute is a characteristic of an entity. For example, a
customer entity would be described by attributes such as last
name, first name, phone numbers, address, etc.. As we will see, it
is also possible for relationships to have attributes.

Data Model Basic Building Blocks

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 13 © Dr. Mark Llewellyn

• A relationship describes a bi-directional association among
entities. For example, a relationship exists between customers
and sales agents that could be described as follows: A sales agent
can serve many customers, and each customer may be served by
one sales agent.

• Data models use three types of relationships: one-to-many,
many-to-many, and one-to-one. Database designers and most
data modeling tools use the shorthand notations 1:M or 1..*, M:N
or *..*, and 1:1 or 1..1, respectively.

Data Model Basic Building Blocks

1:M – a painter creates many different paintings, but each is painted by only
one painter.

M:N – an employee may learn many job skills, and each job skill may be
learned by many employees.

1:1 – Each department must have only one employee who is a manager and
each employee who is a manager can manage only one department.

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 14 © Dr. Mark Llewellyn

Data Model Basic Building Blocks

a1

a2

a3

a4

b1

b2

b3

b4

A B
1:1 Relationship

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 15 © Dr. Mark Llewellyn

Data Model Basic Building Blocks

A B

1:M Relationship

(from A to B)

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 16 © Dr. Mark Llewellyn

Data Model Basic Building Blocks

A BM:1 Relationship

(from B to A)

a1

a2

a3

a4

b1

b2

b3

b4

b5

a5

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 17 © Dr. Mark Llewellyn

Data Model Basic Building Blocks

A B

M:N Relationship

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 18 © Dr. Mark Llewellyn

• The fourth and final basic building block is a constraint, which is
a restriction placed on the data.

• Constraints are important because they help to ensure data
integrity.

• Constraints are normally expressed in the form of rules. For
example:

– An employee’s salary must have values between 45,000 and 200,000.

– A student’s GPA must be between 0.00 and 4.00.

– Each class must have one and only one teacher.

• Constraints arise from business rules which are derived from a
detailed description of how an organization operates.

Data Model Basic Building Blocks

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 19 © Dr. Mark Llewellyn

• When database designers go about selecting or determining the
entities, attributes, and relationships that will be used to build a
data model, they start by gaining a thorough understanding of
what types of data exit in an organization, how the data is used,
and in what time frames they are used.

• Such data by itself does not yield the required understanding of
the total business. From a database point of view, the collection
of data becomes meaningful only when it reflects properly
defined business rules.

• A business rule is a brief, precise, and unambiguous description
of a policy, procedure, or principle within a specific organization.

Business Rules

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 20 © Dr. Mark Llewellyn

• Properly written business rules are used to define entities,
attributes, relationship, and constraints.

• Any time you see relationship statements such as “an agent can
server many customers, and each customer can be served by only
one agent,” business rules are at work.

• To be effective, business rules must be easy to understand and
widely disseminated to ensure that every person in the
organization shares a common interpretation of the rules.
Business rules describe, in simple language, the main and
distinguishing characteristics of the data as viewed by the
company.

Business Rules

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 21 © Dr. Mark Llewellyn

• Examples of business rules are as follows:

– A customer may generate many invoices.

– An invoice is generated by only one customer.

– A training session cannot be scheduled for fewer than 10 employees or for
more than 30 employees.

• Note that the business rules establish entities, relationships, and
constraints. For example, the first two business rules above
establish two entities (Customer and Invoice) and a 1:M
relationship between them. The third business rule above
establishes a constraint (no fewer than 10 people and no more
than 30 people, two entities (Employee and Training), and a
relationship between Employee and Training.

Business Rules

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 22 © Dr. Mark Llewellyn

• The main source of business rules are company managers, policy
makers, department managers, and written documentation such as
a company’s procedures, standards, and operations manuals.

• A faster and more direct source of business rules is direct
interviews with end users. Unfortunately, because perceptions
differ, end users are sometimes a less reliable source when it
comes to specifying business rules.

– For example, a maintenance department mechanic might believe that any
mechanic can initiate a maintenance procedure, when actually only
mechanics with inspection authorization can perform such a task. Such a
distinction might seem trivial, but it can have major legal ramifications.

– Too often interview with several people who perform the same job may
yield very different perceptions of what the job components are. While
such a discovery might point to “management problems”, this is of little
help to the database designer.

Discovering Business Rules

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 23 © Dr. Mark Llewellyn

• The process of identifying and documenting business rules is
essential to database design for several reasons:

– They help to standardize the organization’s view of data.

– They can be a communication tool between users and designers.

– They allow the designer to understand the nature, role, and scope of the
data.

– They allow the designer to understand business processes.

– They allow the designer to develop appropriate relationship participation
rules and constraints and to create an accurate data model.

• Not all business rules can be modeled. For example, a business
rule that specifies “no pilot can fly more than 10 hours within any
24 hour period” cannot be modeled. However, such a business
rule can be enforced by application software.

Discovering Business Rules

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 24 © Dr. Mark Llewellyn

• Business rules set the stage for the proper identification of
entities, attributes, relationships, and constraints. In the real
world, names are used to identify object. If the business
environment wants to keep track of the objects, there will be
specific business rules for the objects.

• As a general rule, a noun in a business rule will translate to an
entity in the model, and a verb (active or passive) that associates
the nouns will translate into a relationship among the entities.

– For example, the business rule “a customer may generate many invoices”
contains two nouns (customer and invoices) and a verb (generate) that
associates the nouns. From this business rule, you could deduce that:

• Customer and invoice are objects of interest for the environment and should be
represented by their respective entities.

• There is a “generate” relationship between customer and invoice.

Translating Business Rules Into Data Model Components

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 25 © Dr. Mark Llewellyn

• To properly identify the type of relationship, you should consider
that relationships are bidirectional, that is, they go both ways.

– For example, the business rule “a customer may generate many invoices” is
complemented by the business rule “an invoice is generated by only one
customer.” In that case, the relationship is 1:M. Customers is the “1” side,
and invoice is the “M” side.

• As a general rule, to properly identify the relationship type, you
should ask two questions”

– How many instances of B are related to one instance of A?

– How many instances of A are related to one instance of B?

• You can assess the relationship between student and class by
asking two questions: (1) in how many classes can one student
enroll? (answer: many), and (2) how many students can enroll in
one class? (answer: many). Thus the relationship is N:M.

Translating Business Rules Into Data Model Components

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 26 © Dr. Mark Llewellyn

• During the translation of business rules to data model
components, you identify the entities, attributes, relationships,
and constraints. This identification process includes naming the
object in a way that make it unique and distinguishable from other
objects in the problem domain. It is therefore important to pay
special attention to how you name the objects you are
discovering.

• Entity names should be descriptive of the objects in the business
environment and use terminology that is familiar to the users. An
attribute name should also be descriptive of the data represented
by that attribute.

– For example, if you are modeling a student entity and have their name as
an attribute it should be something such as: STUDENT(name) and not
OBJECT1(item1).

Business Rules: Naming Conventions

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 27 © Dr. Mark Llewellyn

• It is also good practice to prefix the name of an attribute with the
name (or an abbreviation) of the entity in which it occurs.

– For example, in the CUSTOMER entity, the customer’s credit limit might
be called CUSTOMER_CREDIT_LIMIT, or perhaps
CUS_CREDIT_LIMIT.

• The reason for this will become more apparent later on when you
learn about the need to use common attributes to specify
relationships between entities.

• The use of a proper naming convention will improve the data
model’s ability to facilitate communication among the designer,
application programmer, and the end users.

• A proper naming convention can go a long way toward making
your model self-documenting.

Business Rules: Naming Conventions

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 28 © Dr. Mark Llewellyn

• The quest for better data management has led to several different
models that attempt to resolve the previous model’s critical
shortcomings and to provide solutions to ever-evolving data
management needs.

• The various data models that have been developed, represent
schools of thought as to what a database is, what it should do, the
types of structures it should employ, and the technology that
would be used to implement these structures.

• The table on the next page illustrates an overview of the major
data models in roughly chronological order.

Evolution Of Data Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 29 © Dr. Mark Llewellyn

Evolution Of Data Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 30 © Dr. Mark Llewellyn

• The hierarchical model was developed in the 1960s to manage
large amounts of data from complex manufacturing projects, such
as the Apollo rocket program (moon landing in 1969).

• The model’s basic logical structure is represented as a tree. The
tree contains levels, or segments. A segment is the equivalent of
a file system’s record type. Within the hierarchy, a higher layer is
perceived as the parent of the segment directly beneath it, which
is called the child.

• The hierarchical model depicts a set of 1:M relationships between
a parent and its children segments. Each parent can have many
children, but each child has only one parent.

The Hierarchical Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 31 © Dr. Mark Llewellyn

• The network model was created to represent complex data
relationships more effectively than the hierarchical model, to
improve database performance, and to impose a database
standard.

• In the network model, the user perceives the database as a
collection of records in 1:M relationships. Unlike, the
hierarchical model, the network model allows a record to have
more than one parent.

• Although it is generally not used today, the network model
defined many standards and concepts that are still in use today,
such as the terms schema and sub-schema and definitions for a
data manipulation language (DML) and data definition language
(DDL).

The Network Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 32 © Dr. Mark Llewellyn

• The relational model was introduced in 1970 by E.F. Codd
(working for IBM at the time), in his landmark paper “A
Relational Model of Data for Large Shared Databanks”
(Communications of the ACM, June 1970, pp.377-387).

• The relational model’s foundation is a mathematical concept
known as a relation. To avoid the complexity of abstract
mathematical theory, think of a relation as a matrix composed of
intersecting rows and columns. Each row is called a tuple. Each
column represents an attribute.

• The relational model also describes a precise set of data
manipulation constructs based on advanced mathematical
concepts.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 33 © Dr. Mark Llewellyn

• The relational model is implemented through a very sophisticated
relational database management system (RDBMS). The RDBMS
performs the same basic functions provided by the hierarchical
and network DBMS systems, in addition to a host of other
functions that make the relational data model easier to understand
and implement.

• Arguably, the most important advantage of the RDBMS is its
ability to hide the complexities of the relational model from the
user.

• The RDBMS manages all of the physical details, while the user
sees the relational database as a collection of tables in which the
data are stored. The user can manipulate and query the data in a
way that seems intuitive and logical.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 34 © Dr. Mark Llewellyn

• Tables are related to each other through the sharing of a common
attribute (a value in a column).

• For example, the next page illustrates how the CUSTOMER table
might contain a sales agent’s number that is also contained in the
AGENT table.

• The common link between the CUSTOMER and AGENT tables
enables you to match the customer to their sales agent, even
though the customer data are stored in one table and the sales
agent data are stored in another table.

– For example, you can easily determine that customer Dunne’s agent is
Alex Alby because for customer Dunne, the CUSTOMER table’s
AGENT_CODE is 051, which matches the AGENT table’s
AGENT_CODE for Alex Alby.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 35 © Dr. Mark Llewellyn

Evolution Of Data Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 36 © Dr. Mark Llewellyn

• The relational model provides a minimum level of controlled data
redundancy to eliminate most of the redundancies commonly
found in file systems.

• The relationship type (1:1, 1:M, M:N) is often shown in a
relational schema. An example is shown on the next slide.

• A relational diagram is a representation of the relational
database’s entities, the attributes within those entities, and the
relationships between those entities.

• The example on the next page illustrates a Microsoft Access
representation of a 1:M relationship. The infinity symbol is used
by Access to indicate the many side of a relationship.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 37 © Dr. Mark Llewellyn

The Relational Model

A Microsoft Access relational diagram illustrating

a 1:M relationship from Agent to Customer. (One

agent can have many customers, but a customer

can have only one agent.)

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 38 © Dr. Mark Llewellyn

• A relational table stores a collection of related entities. In this
respect, the relational database table resembles a file, but there is
a critical difference between a table and a file. A table yields
complete data and structural independence because it is purely a
logical structure. How the data are physically stored in the
database is of no concern to the user or the designer; the
perception is what counts.

• It was this factor that led to the relational data model
revolutionizing the database world.

• Another reason for the relational data model’s rise to dominance
is its powerful and flexible query language. Most relational
database software uses SQL, which allows the user to specify
what must be done without having to specify how it is done.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 39 © Dr. Mark Llewellyn

• From an end-user perspective, and SQL-based relational database
application involves three parts: a user interface, a set of tables
stored in the database, and the SQL “engine”.

– The end-user interface. Basically, the interface allows the end user to
interact with the data (by automatically generating SQL code). Each
interface is a product of the software vendor’s ides of meaningful
interaction with the data.

– A collection of tables stored in the database. In a relational database, all
data are perceived to be stored in tables. The tables simply present the data
to the end user in a way that is easy to understand. Each table is
independent. Rows in different tables are related by common values in
common attributes.

– SQL engine. Largely hidden from the end user, the SQL engine executes
all queries or data requests. The SQL engine is part of the DBMS
software.

The Relational Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 40 © Dr. Mark Llewellyn

• The conceptual simplicity of the relational database technology
triggered the demand for RDBMSs. In turn, the rapidly
increasing requirements for transactions and information created
the need for more complex database implementation structures,
thus creating the need for more effective database design tools.

– For example, building a skyscraper requires more detailed design activities
than building a doghouse.

• Complex design activities require conceptual simplicity to yield
successful results. Although the relational model was a huge
improvement over the hierarchical and network models, it still
lacked the features that would make it an effective database
design tool.

The Entity-Relationship Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 41 © Dr. Mark Llewellyn

• Because it is easier to examine structures graphically than to
describe them in text, database designers prefer to use a graphical
tool in which entities and their relationships are pictured.

• As a result, the entity-relationship (ER) model, or ERM, has
become the most widely accepted standard for database modeling.

• Peter Chen first introduced the ER data model in 1976 and it
quickly became popular because it complemented the relational
data model concepts.

• The relational data model (a logical model) and the ER model (a
conceptual model) are combined to provide the foundation for
tightly structured database design.

The Entity-Relationship Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 42 © Dr. Mark Llewellyn

• The ER model is based on the following components:

– Entity. An entity is represented in the ERD by a rectangle, also known as
an entity box. The name of the entity, a noun, is written in the center of the
rectangle. The entity name is generally written in all capital letters and
singular in form: PAINTER rather than PAINTERS and EMPLOYEE
rather than EMPLOYEES. When applying the ERD to the relational
model, an entity is mapped to a relational table. Each row in the relational
table is known as an entity instance or entity occurrence in the ER model.

Each entity consists of a set of attributes that describes particular
characteristics of the entity. We’ll see how to include these shortly.

– Relationships. Relationships describe associations among data. Most
relationships describe associations between two entities. The ER model
uses the term connectivity or cardinality to label the relationship types.

• The next slide illustrates the different types of relationships using
three different ER notations.

The Entity-Relationship Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 43 © Dr. Mark Llewellyn

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 44 © Dr. Mark Llewellyn

• Increasingly complex real-world problems demonstrated a need
for a data model that more closely represented the real world.

• In the object-oriented data model (OODM), both data and their
relationships are contained in a single structure known as an
object. In turn, the OODM is the basis for the object-oriented
database management system (OODBMS).

• An OODM reflects a very different way to define and use entities.
Like the relational model’s entity, an object is described by its
factual content. But, quite unlike an entity, an object includes
information about relationships between the facts within the
object, as well as information about its relationship with other
objects. Therefore, facts within the object are given greater
meaning. The OODM is a semantic data model.

• An OODM example is shown on the next slide.

The Object-Oriented (OO) Model

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 45 © Dr. Mark Llewellyn

Evolution Of Data Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 46 © Dr. Mark Llewellyn

• Facing the demand to support more complex data representations,
the relational model’s main vendors evolved the model further
and created the extended relational data model (ERDM).

• The ERDM adds many of the OO model’s features within the
inherently simpler relational database structure. The ERDM gave
rise to a new generation of relational databases that support OO
features such as objects, extensible data types based on classes
and inheritance.

• DBMS based on the ERDM are often described as an
object/relational database management system (O/R DBMS).

• Today, most relational database products can be classified as
object/relational, and they represent the dominate market share of
OLTP and OLAP database applications.

Object/Relational And XML Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 47 © Dr. Mark Llewellyn

• The success of the O/R DBMS can be attributed to the model’s
conceptual simplicity, data integrity, easy-to-use query language,
high transaction performance, high availability, security,
scalability, and expandability.

• In contrast, the OO DBMS is popular in niche markets such as
CAD/CAM systems, geographic information systems (GIS),
telecommunications, and multimedia, which require support for
more complex objects.

• From the start, the OO and relational models were developed in
response to different problems. The OO model was created to
address very specific engineering needs, not the wide-ranging
needs of general data management tasks.

Object/Relational And XML Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 48 © Dr. Mark Llewellyn

• Given its focus on a smaller set of problem areas, it is not
surprising that the OO market has not grown as rapidly as the
relational data model market.

• Although relational and object/relational databases address most
current data processing needs, a new generation of databases has
emerged to address some very specific challenges found in some
Internet-era organizations.

Object/Relational And XML Models

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 49 © Dr. Mark Llewellyn

• Deriving usable business information from the mountains of Web
data that organizations have accumulated over the years has
become an imperative need.

• Web data in the form of browsing patterns, purchasing histories,
customer preferences, behavior patterns, and social media data
from sources such as Facebook, Twitter, and LinkedIn have
inundated organizations with combinations of structured and
unstructured data.

• According to many studies, the rapid pace of data growth is the
top challenge for many organizations, with system performance
and scalability as the next biggest challenges.

• Today’s IT managers are constantly balancing the need to manage
this rapidly growing data with shrinking budgets.

Emerging Data Models: Big Data And NoSQL

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 50 © Dr. Mark Llewellyn

• The need to manage and leverage all of these converging trends
(rapid data growth, performance, scalability, and lower costs) has
triggered a phenomenon called “Big Data.”

• Big Data refers to a movement to find new and better ways to
manage large amounts of Web-generated data and derive business
insight from it, while simultaneously providing high performance
and scalability at a reasonable cost.

Emerging Data Models: Big Data And NoSQL

Unstructured data might be word-processing documents, emails, web pages,

and diagrams. XML is the de facto standard for the efficient and effective

exchange of structured, semi-structured, and unstructured data. XML

databases were created to handle the unstructured data within the XML

format. Both the relational data model and the O/R data model are easily

extended to support XML.

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 51 © Dr. Mark Llewellyn

• The big problem is that the relational data model does not always
match the needs of organizations with Big Data challenges:

– It is not always possible to fit unstructured, social media data into the
conventional relational structure of rows and columns.

– Adding millions of rows of multi-format (structured and unstructured) data
on a daily basis will inevitably lead to the need for more storage,
processing power, and sophisticated data analysis tools that may not be
available in the relational environment.

– Generally speaking, the type of high-volume implementation required in
the RDBMS environment for the Big Data problem comes with a hefty
price tag for expanding hardware, storage, and software licenses.

– Data analysis based on OLAP tools has proven to be very successful in
relational environments with highly structured data. However, mining for
usable data in the vast amounts of unstructured data collected from Web
sources requires a different approach.

Emerging Data Models: Big Data And NoSQL

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 52 © Dr. Mark Llewellyn

• There is no “one-size-fits-all” cure to data management.

• For some organizations, creating a highly scalable, fault-tolerant
infrastructure for Big Data analysis could prove to be a matter of
business survival. The business world has many examples of
companies that leverage technology to gain a competitive
advantage, and others that miss it.

• Consider the current business landscape if:

– MySpace had responded to Facebook’s challenge in time.

– Blockbuster had reacted to the Netflix business model sooner.

– Barnes & Noble had developed a viable Internet strategy before Amazon.

• Therefore, it is not surprising that some organizations are turning
to NoSQL databases to mine the wealth of information in Web
data.

Emerging Data Models: Big Data And NoSQL

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 53 © Dr. Mark Llewellyn

• Every time you search for a product on Amazon, send a message
to friends in Facebook, watch a video on YouTube, or search for
directions in Google Maps, you are using a NoSQL database.

• As with any new technology, the term NoSQL can be loosely
applied to many different types of technologies.

• However, in general, NoSQL tends to refer to a new generation of
databases that address the specific challenges of the Big Data era
and have the following general characteristics:

– Not based on the relational data model.

– Support distributed database architectures.

– Provides high scalability, high availability, and fault tolerance.

– Supports very large amounts of sparse data.

– Geared toward performance rather than transaction consistency.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 54 © Dr. Mark Llewellyn

NoSQL Databases

NOTE:

Does all of this mean that relational databases don’t have a

place in organizations with Big Data challenges?

No, relational databases remain the preferred and dominant

databases to support most day-to-day transactions and

structured data analytics needs. Each DBMS technology has its

areas of applications, and the best approach is to use the best

tool for the job. In perspective, object/relational databases

server 98% of market needs. For the remaining 2%, NoSQL

databases are an option.

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 55 © Dr. Mark Llewellyn

• While NoSQL databases are not based on the relational data
model, there is no standard NoSQL model.

• Many different data models are grouped under the NoSQL
umbrella, from document databases to graph stores, column
stores, and key-value stores.

• It is still too early to know, which, if any of these data models will
survive and grow to become the dominant force in the database
arena.

• The early success of products such as Amazon’s SimpleDB,
Google’s BigTable, and Apache’s Cassandra point to the key-
value stores and column stores as the early leaders.

• The word stores indicates that these models permanently store
data in secondary storage, just like any other database.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 56 © Dr. Mark Llewellyn

• The key-value data model is based on a structure composed of
two data elements: a key and a value, in which every key has a
corresponding value or set of values.

• The key value model is also referred to as the attribute-value or
associative data model.

• Consider the example shown on the next slide which illustrates a
small truck-driving company called Trucks-R-Us. Each of its
three drivers has one or more certifications and other general
information.

• Based on this example we can define the following important
points:

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 57 © Dr. Mark Llewellyn

NoSQL Databases

DID CERT1 CERT2 DOB LICTYPECERT3

2732 80 90 1/24/1962 P

2946 92 90 4/11/1970

3650 86 6/27/1968 C

DID KEY VALUE

2732 CERT1 80

2732 CERT3 90

2732 DOB 1/24/1962

2732 LICTYPE P

2946 CERT2 92

2946 CERT3 90

2946 DOB 4/11/1970

3650 CERT1 86

3650 DOB 6/27/1968

36500 LICTYPE C

Data stored using traditional relational model Data stored using key-value model

Driver

2732

• In the relational model:

• Each row represents one entity instance

• Each column represents one attribute of the entity

• The values in a column are of the same data type

• In the key-value model:

• Each row represents one attribute/value of one entity

instance

• The “key” column could represent any entity’s

attribute

• The values in the “value” column could be of any

data type and therefore it is generally assigned a

long string data type

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 58 © Dr. Mark Llewellyn

– In the relational model, every row represents a single entity occurrence and
every column represents an attribute of the entity occurrence Each column
has a defined data type.

– In the key-value model, each row represents one attribute of one entity
instance. The “key” column points to an attribute and the “value” column
contains the actual value for the attribute.

– The data type of the “value” column is generally a long string to
accommodate the variety of actual data types of the values placed in the
column.

– To add a new entity attribute in the relational model, you need to modify
the table definition (schema modification). To add a new attribute in the
key-value model, you add a row to the key-value store, which is why it is
said to be “schema-less”.

– NoSQL databases do not store or enforce relationships among entities. The
programmer is required to manage the relationships in the code. Also, all
data and integrity validations must be done in the code. (Some
implementations have been extended to include metadata support.)

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 59 © Dr. Mark Llewellyn

– No SQL databases use their own native application programming interface
(API) with simple data access commands, such as put, read, and delete.
Because there is no declarative SQL-like syntax to retrieve data, the
program code must take care of retrieving related data in the correct way.

– Indexing and searches can be difficult. Because the “value” column in the
key-value model could contain many different data types, it is often
difficult to create indices on the data. At the same time, searches can
become very complex.

• You could use the key-value modeling technique for any situation
in which the attributes are numerous, but the actual data values
are scarce. The key-value model is not exclusive of NoSQL
databases; actually, key-value structures could exist inside a
relational database. However, because of the problems with
maintaining relationships and integrity within the data, and the
increased complexity of even simple queries, key-value structures
would be a poor design for most structured business data.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 60 © Dr. Mark Llewellyn

• Several NoSQL database implementations, such as Google’s
BigTable and Apache’s Cassandra, have extended the key-value
model to group multiple key-value sets into column families or
column stores.

• In addition, such implementations support features such as
versioning using a date/time stamp. For example, BigTable stores
data in the syntax of [row, column, time, value], where row,
column and value are string data types and time is a date/time
data type. The key used to access the data is composed of (row,
column, time), where time can be left blank to indicate the most
recent stored value.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 61 © Dr. Mark Llewellyn

• One of the big advantages of NoSQL databases is that they
generally use a distributed architecture.

• NoSQL databases can handle very large volumes of data. In
particular, they are suited for sparse data.

• Sparse data occurs when the number of attributes is very large,
but the number of actual data instances is low. Using the truck
driving company as an example, drivers can take any certification
exam, but they are not required to take them all. In this case there
were three drivers and three possible certificates for each driver,
so there will be nine possible data points (we illustrated only 4).
Extrapolate this to a hospital with 50,000 patients and more than
2500 possible medical tests that could be performed. We would
not expect to see 50000 x 2500 data points, in reality we would
see far less.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 62 © Dr. Mark Llewellyn

• Most NoSQL databases are geared toward performance rather
than transaction consistency.

• Enforcing data consistency on a distributed database is a very
difficult problem. Distributed databases make copies of data
elements at multiple nodes to ensure high availability and fault
tolerance. Updating values and requiring consistency amongst all
copies is a very tough problem to solve. NoSQL database
sacrifice this consistency to attain high levels of performance.

• Some NoSQL databases provide a feature called eventual
consistency, which means that updates to data will propagate
through the system and eventually all copies will be consistent.
With eventual consistency, data are not guaranteed to be
consistent across all copies immediately after an update.

NoSQL Databases

COP 4710: Data Modeling (Chapter 2 – Part 1) Page 63 © Dr. Mark Llewellyn

Evolution Of Data Models

